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Rates of Convergence to Equilibrium in the 
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The rates of convergence to equilibrium in the Prigogine-Misra-Courbage 
theory of irreversibility, as developed by Goldstein, Misra, and Courbage, are 
examined. It is found that arbitrarily slow convergence to equilibrium should be 
present; in fact, in a certain precise sense, it should be the most abundant 
behavior. This is compared with the common beliefs in kinetic theory. 
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1. I N T R O D U C T I O N  

Misra, Prigogine, and Courbage  have proposed a general theory of irrevers- 
ibility in (classical and quantum)  dynamical  systems (1-3) based on ideas of 
Prigogine e t  a/. (4) and  Misra. (5) The theory has been further developed by 
these and others (6 s) and constitutes a conceptual  f ramework in which to 
discuss irreversibility of dynamical  systems. It has been shown that, in this 
framework,  very unstable classical dynamical  systems are indeed irrevers- 
ible and that their convergence to equilibrium is monotonic .  (6) 

Since irreversible behavior  in nature has m a n y  other features besides 
monoton ic  irreversibility (these features constitute the lore of kinetic the- 
ory), it seems advisable to study which of them can be fitted into Pri- 
g o g i n e - M i s r a - C o u r b a g e  conceptual  framework.  This paper is concerned 
with rates of approach  to equilibrium in unstable classical dynamical  
systems. 

In Section 2 a brief summary  of the basis of the theory is given. In  
Section 3 it is shown how this p rogram of establishing mono tone  approach  
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to equilibrium can be carried out for classical K systems. This section 
follows Ref. 6 very closely. In Section 4 the results on rates of approach to 
equilibrium are presented. 

2, BRIEF SUMMARY OF P R I G O G I N E - M I S R A - C O U R B A G E  THEORY 

If the dynamics of a physical system is very unstable, we cannot make 
measurements and preparations accurate enough to follow a definite trajec- 
tory over an appreciable interval of time. So, since the concept of individ- 
ual trajectories will not have any operational meaning, we should try to 
substitute for the usual dynamical description of the system, based on 
trajectories, another description somehow incorporating our inability to 
make accurate predictions. 

It is hoped that this new description of dynamics will be free from 
recurrence (Poincar6-Zermelo) and time reversal paradoxes since both of 
them depend crucially on the validity of the concept of individual trajecto- 
ries. In this new description all states should approach equilibrium mono- 
tonically. 

Let us make this more precise. Let (~2, ~5,/~) be a probability space 
(which should be thought of as the phase space of a classical system, so we 
will assume that it contains sets of any measure less than or equal to one). 
Assume, moreover, that we have defined in this space a measure preserving 
time evolution, i.e., a group of transformations 

Tt : ~2~2,  t ~  
satisfying 

(i) T '+s = T T  s, all t ,s  ~ R 

l ~ [ ( T t ) - l A ] = l x ( A ) ,  all t ~ N, allA ~@ (ii) 

(This should be thought of as Hamiltonian evolution.) 
It is well known (Koopman's lemma (9)) that the family of operators 

U, : L2(a) --~ L2(a) 

defined by 

(U,O)(x)  = o ( r  'x) 

(we will sometimes consider U, as defined in other spaces of integrable 
functions by this same formula) is a semigroup of unitary operators that 
also satisfy 

(i) Ut~ >i O, whenever 

(ii) f f 
(iii) U,1 = 1 

0 / > 0  
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The first two conditions are necessary and sufficient for the operator 
U~ to map probability densities into probability densities. The third one 
means that U, leaves 1, the microcanonical equilibrium state, invariant. 
Operators satisfying the first two properties are called stochastic and if they 
also satisfy the third one they are called doubly stochastic. There are many 
doubly stochastic operators that do not come from measure-preserving 
transformations. An example to keep in mind could be the heat kernel. 

In accordance with the philosophy previously exposed, we will assume 
that, in the process of measurement, we do not observe 0, but only a 
blurred version of it, ~, related to 0 by 

fi= A0 
where A is a doubly stochastic operator implementing this smearing out of 
states. If A is injective, we can also define a dynamics in the ~ description 
to model the evolution of the physical system, namely, 

fi, = A U,A lfi0 

Notice that A-1 will not be, in general, bounded. We will require, however, 
that it is densely defined. 

In order that this dynamics can be interpreted as an evolution of states 
leaving equilibrium invariant, it is necessary that A U, A - i  be a doubly 
stochastic operator in its domain of definition. From that it follows Ref. 10 
that AUrA -1 maps L p into L P (any 1 < P < m) and that ]IAU~A-1llL,_~cp 
-- 1. So, it has a unique extension W t to the whole L e which is also doubly 
stochastic. It is to be remarked that we only make these requirements for 
t >/0. i t  is known that if we made them for all t ~ N we would run into 
difficulties. If Wt( ~ - 1) is to tend to zero, then VV~ cannot be uniformly 
bounded. In particular, it cannot be doubly stochastic and therefore cannot 
be interpreted as (backwards) evolution of states. This causes no difficulty 
at all because it only emphasizes the time asymmetry of W t evolution. 

The goal is now to find a physically motivated A such that the 
approach to equilibrium in the fi description is monotonic for all states. 
Following standard practice in the theory, we will consider only states 
described by L 2 functions: 

This is quite reasonable for finite systems with Liouville measure, but for 
infinite systems endowed with Gibbs measure it appears physically unnatu- 
ral to exclude states described by singular measures. So, our discussion will 
be interesting only for the first case. We will also take as a definition of 
monotonic approach to equilibrium 

I I~ -  llIL2~ 0 
monotonically 

Notice that this requirement shows that ][fit- 1 II L2 is a candidate for the 
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entropy of the system. Other such candidates have been considered in Ref. 
11. Though this point of view about irreversibility (existence of an ever- 
increasing entropy function) is related to Prigogine-Misra-Courbage the- 
orb', it is independent and will, therefore, not be considered in detail here. 
Notice also that there is no hope that this program can be carried out for 
very stable systems, having, e.g., a state evolving in a periodic fashion. It is 
known that if the program outlined above can be carried through, the 
system should satisfy certain properties stronger than ergodicity. 

In the next section we are going to show, following Ref. 6 closely, that 
indeed we can find such A for K systems. 

3. MONOTONIC APPROACH TO EQUILIBRIUM OF K ~YSTEMS 

We say that an abstract dynamical system is a K flow if there exists a a 
algebra oy of measurable sets satisfying 

(a) ~ C TtV, t >f 0 

(b) V T,~ = qS, the algebra of all measurable sets 

(c) (~ T,~ = algebra of all sets of measure zero or one 
t =  --OC~ 

The physical interpretation of this is that ~ is the o algebra of all the sets 
that can be specified by measurements in the past of the trajectory. (We 
measure with finite accuracy.) So what these conditions mean is that 
specifying the trajectory up to a remote past does not specify very much, 
(c), but to predict the trajectory to a distant future, we will need to get a 
great deal of information, (b). 

See Refs. 12 and 13 for more details. 
It is known that K systems appear when the underlying physical 

process is very unstable. (12) 
We will call Px the projections over the space of functions measurable 

with respect to T\~ 
PxP = E [ 0 t Tx~] 

From properties (a), (b), (c) follows immediately 

(a') Px < Px' whenever X < X' 

(b') lira Px = Id 
)k---) + ~ 

lira Px = projection over constant functions ~ P _ ~  

(Limits are understood in strong operator sense.) 

(c') U* Px Ut = Px t 

(d') U'P, -ooUt= P-r162 
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Calling 
F x =  P x -  P _ ~  

we can define 

A =fh(X)dFx+ P_~ 

We have to show that for some choices of h, this A has all the required 
properties. 

(a) It is clear from the definition that A preserves integrals, and 
A I = I .  

(b) A is positivity preserving if h is positive, decreasing, h ( -  oe) -<< 1, 
as can be seen integrating by parts in the definition of and observing that 
under the previous hypothesis it is a combination, with positive coefficients, 
of positivity-preserving operators: 

A = - f h ' ( h ) P  xd2t+ [1 - h ( -  o e ) ] e  ~ 

(c) If hQt) -~ 0 then A -  l exists and is densely defined. 
Now, we remark that I/V, is positivity preserving if and only if U* W, is. 

A simple computation shows that 

= f  h(X+ 0 

so that W t is positivity preserving provided that h(X + t)/h(h) is decreasing 
in X. Notice that by (b), we already have 

h(x + 0 
(i) O< h ( ) t ~  < l  

h(X + 0 
(ii) lim - 1 

II(W~ - P-~)oJI~ = H(U*W, - P_~)pl2 2 

_ c  h2(X + t) 
J h2()t) d(p, Fxp) 

Since d(p, Fxp) is a finite, positive measure, and h2(• + t)/h2(X) decreases 
monotonically with t for any fixed ~t, we will have, using Lebesgue 
monotone convergence 

II( W, - P_ ~)Pll~ ~ 0 monotonically 

provided 
h2(X + t) 

lim - 0 for all ;~ 
h2(X) 

This will happen if and only if l imx. ~ h(~) = 0. 
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So, we will have finished the construction of A if we can find a 
function h > 0 which simultaneously satisfies the following: 

(a) monotone decreasing 

(b) h ( -  oc) < 1 

h(X + t) 
(c) h(X) decreasing 

(d) lim h(X) = 0 

These conditions are satisfied by a function of the form 

h (X) = e - ~(x) 
with (I) satisfying 

(a) cI) convex, increasing 

(b) ~5 > 0 

(c) ) ira r = + 

which are obviously compatible. 

4, RATES OF CONVERGENCE TO EQUILIBRIUM 

The first result we will prove is independent of the Prigogine-Misra- 
Courbage theory. It is a constraint on rates of approach to equilibrium 
imposed by the structure of dynamics. In this sense, it could be said that it 
is reminiscent in spirit of the Poincar6-Zermelo recurrence paradox. 

Theorem 1. Suppose we have a dynamics HI,, [t W,11 ~< 1 that makes 
the system approach equilibrium. If all states decay at a certain fixed rate, 
this rate can be chosen to be exponential. 

Proof. Suppose we had 

[l(W, - P-~)oll -< K(o)f(t), f ( t ) ->Oforal lp~  E. 

Then we would have a similar inequality valid for all 0 ~ LZ. Using the 
uniform boundness principle, we can get 

II(W, - P-~)[I  < Kf(t) 

Choose ~" such that Kf(,r) = a < 1. Then 

i t (w. ,  - P-~)oll < ~" 

Remember that, by hypothesis, P ~ = lira W t. Therefore Wr P_ ~ = P_ ~. 
So, 

]I(Wn,+~- P-=)Oil = iI I ~ ( W , , -  P-=)Pll 

< H(W.~ - P-~)OH 
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We see that we can obtain 

which establishes the claim. II 

From now on we will specialize the discussion to Prigogine-Misra- 
Courbage theory, though it will be clear from the argument that part of the 
result will have a more general validity. It is possible that the results in this 
section also hold for some other methods proposed to drive Hamiltonian 
dynamics to equilibrium, as, for example, modifying boundary conditions. 
This question is still open, however. 

We will need the following version of the uniform boundness principle. 

Theorem 2. C a l l E p = E  N L P,2~< p~< ~ .  
Let A~ : LP---~ L 2 be a family of bounded operators such that ItA~]I is 

unbounded as a ~ I. Then, there is a residual (in the LP-induced topology) 
set in Ep all whose elements x have the property that IjA~xll2 is unbounded. 

What we mean by a residual set is one that contains a countable 
intersection of open dense sets. It is known (Baire category theorem) that 
residual sets in complete metric spaces (closed subsets of Banach spaces, 
e.g.) are dense. (14~ Moreover, it is clear from the definition that countable 
intersections of them are still residual and, therefore, also dense. This last 
property is what makes it reasonable to interpret these sets as very big. 
They are so big that not only are they close to every point in space but two 
of them cannot miss each other and have to overlap in a set, which is also 
big. This is reminiscent of what happens with sets of full measure and, in 
fact, the analogy can be carried further (see Ref. 15). So in sets which do 
not have a natural measure, but have a natural topology satisfying the 
conditions of the Baire theorem, it is customary to say that a property is 
true for most of the points or that it is "generic" when it holds for all points 
in a residual set. Notice that being generic depends on the topology as 
much as being true almost everywhere depends on the measure. Sets 
residual in a topology can be negligible (complement of residual) in another 
one. If we have both a topology and a measure, the two concepts of big 
associated to them can have similar disagreements even if both the topol- 
ogy and the measure are natural and are closely related (there are examples 
in the unit interval with the usual topology and Lebesgue measure of 
residual sets of zero measure). 

Proof. Call 

B r = ( x l x ~ L P ,  HA~xlPL~<~ralla}, r ~  + 

Then, from the definition, B r A Ep are closed (in Ep). So, the only thing 
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we have to prove is that they have empty interior because, in that case, 
E p - ( B  r N E p )  would be open and dense. But A , ~ N E p - - ( B r N E ; ) i s  
precisely the set of points x in Ep for which llA~xhl L 2 is unbounded. 

The way to prove this is by contradiction. We will show that if any one 
of them had nonempty interior in Ep, IIA~][ would be bounded. So, suppose 
there existed r, e > O, x o ~ Ep such that x ~ Ep, [Ix - x0[LL~ implies x ~ B~. 
We can, then, find 8 > 0 such that [lYHLp < 8 implies tl(1 + f y ) - I ( X o +  
Y) - x01[ c~ < e. If y ~> 0, (1 + f y ) - - l ( x  0 + y)  E Ep. So, by the assumption, 
should also belong to B r. Therefore, x o + y ~ Br(~ + a) and y ~ B~(2 + 8). In 
other words, any positive function of L p norm less than c belongs to 
B~(2+a). Writing any function of L p norm less than e as the difference of its 
positive and negative parts, we see it should be contained in Br(4+2a ) and 
that implies a uniform bound for I I /~ l  I. 1 

We are going to use this theorem to prove the two following ones. 

Theorem 3. Let Ep be defined as before. Then, given any f ( t ) ~ 0  
and any A constructed as in Section 3, there exists an LP-residual set Rp in 
Ep such that [1/f(t)lll(Wt - P-~)oll~= is unbounded for all O E Rp. 

Since we are going to prove existence of states satisfying certain 
properties it could be that extra conditions in the definition of states 
removed them. One such restriction that comes naturally in statistical 
mechanics of many-particle systems is the symmetry of 0 under exchange 
of arguments. However, the conclusion still holds. 

Theorem 4 (many-particle case). We have 

a = (A)~ 
Let 

symmetric under permutation of its arguments 1 P 

Then, given any f ( t ) - ~  0 and any A constructed as in Section 3, preserving 
symmetry under permutation of arguments, there exists an LP-residual set 
R e in Ep such that ( 1 / f (  t))ll( W, - P_~)OllL 2 is unbounded for all p in Rp. 

Notice that the extra condition that A preserves the symmetry under 
permutations can be justified on the same physical grounds (should be 
interpretable as a mapping from states into states) which were used to 
impose the others. 

Proof. In view of Theorem 2, to prove Theorem 3 it will suffice to 
prove 

(*) I lW , -  e_~llg~--,g2 = 1 
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Since then, it would follow that [1/f(t)][[14~-P~[ILp__,L: is un- 
bounded. 

Proof of  (*). 

then 

Since 

this is 

If a function v in L 2 satisfies 

E r r )  ~ t) 

h2(x + t) d<F~,~, FxF,~) 
- f h~(X) 

FxF = { F,x, X~<T 
F,,  ,X >_- ~, 

= f ,  h2(X + t) h2(x ) d<~,~\~) 

,., h2(t + .~) 

h~(t + :.) r'~d<v, Fx~) h2(~ ") ) 

h2(t + r) 

- -  I ~, 12 
2 h2(~ ") 

Now take v of the form 

v = x~ - i ,( .a) (XA = characteristic function of A) 

By choosing/z(A) sufficiently close to 1/2, we can make ilvf!2 arbitrarily 
close to Hvi{~. But V,~ contains sets of measure 1/2. Since all the 
a-algebras ~ can be obtained from each other by application of a measure- 
preserving transformation, it follows that ~', contains sets of measure 
arbitrarily close to 1/2. So we have 

h( t + r) 
!(w, - P-oo)IIL--,L2 >~ h ( ~  
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Since r is arbitrary and h(t  + r ) / h ( r )  tends to 1 when r--> - m  so we get 

I 1 ~  - P - ~ H ~ - ~ - '  > 1 

That the left-hand side is also ~< 1 is trivial. So (*) is proved. �9 
(The inequality > 1 would suffice for the proof.) This finishes the proof of 
Theorem 3. �9 

The proof of Theorem 4 is quite similar to the proof of Theorem 3. We 
only keep at every stage the requirement that all the functions we consider 
are symmetric under the permutation of arguments. The only nontrivial 
part  is to check that (*) goes through, but this can also be done just by 
observing that U~ should preserve this symmetry (it should be interpretable 
as a mapping of states into states) and that Vff, contains symmetric sets of 
arbitrary measure. Except for this, the argument is the same as the earlier 
one. 

R e m a r k  2. The choice of L 2 a s  a setting for Theorems 2, 3, and 4 is 
unessential and was done only because it is for L 2 norm that we prove 
monotone convergence. 

It is possible, however, to prove the following statement: 
For any f ( t )  0 and any 1 ~< q < p < - ~ ,  there is an LP-residual set 

Rp in Ep such that [1 / f ( t ) ] l l (W , - P-~)OIIL~ is unbounded for all O ~ Rp. 
The reasoning to prove the result is the same. We need only that 

IIW,-P-~IIL-+L, > K > 0  

This can be proved by observing that, for all functions x in L ~, we 
have 

Ilxll~2 < llXlIL, IlxlIL~ 
Therefore, 

H(W, - P-~)PlI%= < LI(W, - P-~)pHL,lt(W, - P ~)pi[L = 

< I1( W, - P--~)OllL' <~ 2HPltL~ 

Using the fact that ]I(W, - P_~)HL=-~L2 = 1, we obtain ]] W, - P-~IIL~L~ 
> 1/2. 

We can therefore say that, in some precise sense, slow convergence to 
equilibrium is the most abundant  behavior. This, however, does not imply 
that there is no exponential convergence. We have the following: 

T h e o r e m  5. There is a set D c E (E can be taken as in Theorem 3 
or Theorem 4) such that 

II(Wt - P-~)Pl l  < K(o)e  -a' ,  o~ > O 

where a is a constant that only depends on the choice of h. 
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This set D is nontrivial in the sense that it is L2-dense in the set 

(O r E : ] lO-  111~ 4 1/3)  

(Stronger statements about nontriviality of this set could be made, but they 
are not worthwhile for present purposes.) 

Proof. If p ~ L 2, and O r R a n ( / -  F,) for some ~- 

l i ( W ,  - P_ )ollz = = s h2(x + 1) h (x ) a<o,F o> 

h2(  + t) 

Since h is log-concave there exist a > 0, K, > 0 such that h(.r + t) /h( .r)B 
~< K, e -  4, for all t/> 0. 

Now if 0 is a state and rip - IIIL~ ~< 1/3, then (I  - F,) 0 is also a state 
since Ill-/~\IIL~-,L~ ~< 3 and ( I -  F,)I = 1, so that ( I -  F~)O >i O. (That 
the integral is 1, and symmetry also holds, is trivial.) But 

g 2 

( I -  F )o 

So all points in the set (O ~ EllO - lllL~ ~ 1/3} can be arbitrarily approxi- 
mated (in L 2) by states decaying to equilibrium with an exponential rate. 
That establishes the theorem. [] 

It should also be noted that the theorem as stated is not always 
optimal. Any f ( t )  such that 

h(.r + t) <~ K(.c) f( t ) ,  all t > / 0 , ,  ~< 0 

could be used instead of e - ~ .  There are some h satisfying all the conditions 
imposed before such that all f ( t )  verifying this condition are exponentials or 
slower. However, for other admissible h (like e -  ex) we can take f faster than 
any exponential. 

We have the following theorem to prove that this is essentially optimal. 

Theorem 6. Let f ( t )  satisfy f ( t ) /h ( . r  + t) >0 for all "r. Then, 
t --> -I- oo 

there is no L 2 function p decaying to equilibrium with rate f i t ) ,  i.e., there 
exists no p ~ L:  satisfying 

o l, fo=l 
r] W t P -  l r]2 < K(p) f ( t ) ,  t >t 0 
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Proof. Since fd(p,  Fxp ) = LIP- 111~2 there should be a r such that 
f~_= d(t), Fat)) > 0. But d(t), Fxt)) is a positive measure and we have 

h2( x + 0  ~ h2( x + 0  h2( �9 + 0  f ]12(~)d(t)'rxt)))f"-~ ]12(~)d(t)'rxt)))h2(T)~ oc d(t)'r3J~ 
This establishes the theorem. 

Ftemark 2. The proofs of Theorems 3, 4, and 5 are rather robust in 
the sense that we can modify the hypothesis in several directions without 
altering the conclusions. For example, the proofs of Theorem 3 and 4 carry 
through under the extra restriction on states of having continuous densities. 
We need only to make some extra assumptions to guarantee that we can 
approximate (in the L 2 sense) characteristic functions by continuous ones 
which still have unit norm. 

It turns out that regularity of the measure and normality of a are 
enough.(16) These assumptions are rather harmless and are definitely satis- 
fied if a is a manifold and/x is Liouville measure. Probably other condi- 
tions like differentiability of density functions could alter the picture. But, 
at the moment, lacking a more concrete physical interpretation of A, it is 
unclear which direction these investigations should take. 

Nomark 3. The proofs given of Theorems 3 and 4 appear at first 
glance to be very nonconstructive. However, going carefully over the proof 
of the uniform boundedness theorem we can see that, to construct these 
slowly decaying states, what we are doing is to put mass very close to - 
(in the F x spectral decomposition). 

If we consider conditions like f[?q d(t), Fxt)) < r we obtain uniform 
rates of convergence in the set of states verifying them. 

h2(X ) d(o,f~o> <xEaksup IXl + 1 h2(X) (N + 1)d(t),&o) 

so that t) decays to equilibrium faster than 

1 h(X + t) 
cp (t) = sup 

XcR (}~k I + 1) 1/2 h(X) 

Using known information about h, it is not difficult to prove q0(t) ~ t -  1/2 
It should be clear how to obtain similar results for other growth 

conditions f gOgd@, Fxp ) < ~.  
It is interesting that this condition has a physical interpretation in 

other slightly different versions of Prigogine-Misra-Courbage theory. (1) 
Namely, it is the requirement that the "age" (expected value of a time 
operator) of the state be finite. 
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Remark 4. Notice also that in passing from Theorem 3 to Theorem 
4, the only property of symmetry under permutation of arguments that was 
essentially used is that it be an L~-closed condition. Other such conditions 
like spatial homogeneity can also be imposed without changing the conclu- 
sion. (The argument about existence of characteristic functions satisfying 
such symmetries is the same as the one given.) So we should expect slow 
convergence to take place, even starting with spatially homogeneous states, 
whenever A and U, preserve this symmetry. (The contrary would be 
difficult to reconcile with the physical interpretation of smearing out.) 

Remark  5. Notice that the construction of states in Theorem 3 and 4 
has been done under the hypothesis that the construction of A is done in 
the same way as in Ref. 6. It seems that the general conceptual framework 
could admit other constructions and it might be that these new construc- 
tions altered the conclusions. The latter seems unlikely, but it is a question 
that needs further investigation. 

Remark  6. It could also be thought that the states with the behavior 
exhibited in Theorems 3 and 4 might have been introduced when taking the 
closure of AUrA -1 or equivalently, that they could be suppressed by 
imposing the extra condition O ~ Ran A for O to belong to E. This is not so, 
because the proofs of Theorems 3 and 4 can be reproduced verbatim for 
the operators 

V t = A U  t = ( h ( ~ + t ) d P ~ +  P ~ 
, ]  

It is clear that 

v,~ = ~ A ~  

so that if Vt~ goes to equilibrium slowly, I4/tA~ does also. Clearly A~ 
Ran A. 

Remark  Z This prediction of "extra-long tails" may be related to the 
existence of dissipative structures. It is conceivable that almost any system 
could accommodate dissipative structures of arbitrarily long life. However, 
this suggestion has the difficulty that dissipative structures are generally 
thought of as associated with large distances from equilibrium while extra- 
long tails behavior takes place on dense sets and so, arbitrarily close to 
equilibrium. 

Remark  8. The fact that the constant c~ in Theorem 5 depends only 
on the choice made in the construction of A and that, on the other hand, 
could possibly be calculated from kinetic theory shows even more clearly 
that a deeper understanding of the relationship of this theory to kinetic 
equations is needed. Progress in this question and on other crucial issues 
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like the dependence of these sets or the number of particles seems to 
depend on a more detailed study of concrete realizations of A. 

5. COMPARISON WITH KINETIC THEORY 

Comparison of these results with those of kinetic theory is not quite 
straightforward. First of all, the formalism is different; Prigogine-Misra- 
Courbage theory is formulated in terms of distribution functions and aims 
to describe the approach to microcanonical equilibrium while kinetic theory 
is usually expressed in terms of reduced distribution functions and correla- 
tions and is supposed to describe the approach to canonical equilibrium. 
Even the equivalence of these two ensembles is a nontrivial problem from 
the rigorous point of view. (17) However, in this section, we will not worry 
about this. We are going to assume all the standard beliefs used in kinetic 
theory, so that the result of this section will be a constraint on how many of 
them it can be hoped will be justified by Prigogine-Misra-Courbage theory 
in the face of previous results. 

If we consider our system as immersed in a much larger heat bath with 
which it is interacting weakly, the fact that the whole system (system plus 
bath) is tending to microcanonical equilibrium implies that the small 
system tends to a canonical one. If we assume that, at the beginning, the 
heat bath is in equilibrium, we can assume it remains so exactly. Therefore, 
the difference of the state of the whole system with microcanonical equilib- 
rium is the difference of the state of the small system with the canonical 
one. 

Now we assume that after a sufficiently long time "the description is 
contracted" and that we can describe the system not by a many-body 
density but by a one-particle density. The evolution equation that this 
one-particle density satisties is called the kinetic equation. Several varia- 
tions of this basic procedure lead to different ones: Boltzman, Landau, 
Vlasov, etc. It is believed, moreover, on physical grounds (existence of 
relaxation times) that this evolution sometimes leads to an exponential 
convergence to equilibrium. (See Ref. 18, Chapter 13 for more details.) This 
would imply that the whole system tends to equilibrium exponentially, 
which is in contradiction with the previous results. 

Of course, this conventional wisdom is open to criticism. It could be 
suggested that the fluctuations are just transferred from the system to the 
bath so that the whole system tends to equilibrium slower than the small 
system. This explanation seems to go against the spirit of usual kinetic 
theory and notice that the argument for the heat bath remaining in 
equilibrium is stronger here since we have a built-in tendency to it. 

The equivalence between the canonical and microcanonical examples 
is only rigorous in the thermodynamic limit, and it is argued by some 
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authors that this taking of the thermodynamic limit (or modification 
thereof) is enough to derive kinetic equations without any reinterpretation 
of evolution. (See Ref. 19 for a review of progress in that direction.) 

A proper discussion of these points is beyond the scope of this paper. 
The objective of this last section was to try to clarify how much of the folk 
wisdom of kinetic theory can be justified at the same time on the basis of 
Prigogine-Misra-Courbage theory alone. 
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